Code: 20ME4702D

IV B.Tech - I Semester – Regular / Supplementary Examinations OCTOBER 2024

NON-DESTRUCTIVE TESTING (MECHANICAL ENGINEERING)

Duration: 3 hours Max. Marks: 70

Note: 1. This paper contains questions from 5 units of Syllabus. Each unit carries 14 marks and have an internal choice of Questions.

2. All parts of Question must be answered in one place.

BL – Blooms Level CO – Course Outcome

				<u> </u>	N (
			BL	СО	Max.	
					Marks	
		UNIT-I				
1	a)	Explain the significance of visual inspection	L2	CO2	7 M	
		in NDT and the factors affecting its				
		effectiveness.				
	b)	Compare destructive and non-destructive	L2	CO1	7 M	
		testing methods.				
		OR				
2	a)	Explain the role of developers in Liquid	L2	CO2	7 M	
		Penetrant Testing and their impact on the				
		accuracy of test results.				
	b)	Discuss the importance of interpreting	L2	CO2	7 M	
		results in Liquid Penetrant Testing.				
	UNIT-II					
3	a)	Describe the principle of demagnetization in	L2	CO2	7 M	
		Magnetic Particle Testing and its				
		significance in ensuring accurate results.				

	b)	Discuss the types of magnetization methods	L2	CO2	7 M			
		used in Magnetic Particle Testing and their						
		applications.						
	OR							
4	a)	Discuss the effectiveness of Eddy Current	L2	CO2	7 M			
		Testing in detecting surface and subsurface						
		defects in materials.						
	b)	Explain the role of sensing elements and	L2	CO2	7 M			
		probes in Eddy Current Testing and how						
		they influence test results.						
	I.	<u>, </u>						
		UNIT-III						
5	a)	Discuss the applications of Acoustic	L2	CO2	7 M			
		Emission Testing in leak detection and						
		structural integrity assessment.						
	b)	Explain the significance of sensitivity in	L2	CO2	7 M			
		Acoustic Emission Testing and how it						
		affects the detection of flaws.						
		OR						
6	a)	Discuss about different modes of display in	L2	CO2	7 M			
		Ultrasonic Testing and their role in flaw						
		detection.						
	b)	Explain the limitations of Ultrasonic Testing	L2	CO2	7 M			
		in inspecting complex geometries and						
		material types.						
	UNIT-IV							
7	a)	Explain the basic principles of	L2	CO2	7 M			
		Thermography and its role in identifying						
		hidden defects in materials.						
-			_					

	b)	Discuss the types of detectors used in	L2	CO2	7 M		
	U)				/ 1 V1		
		Thermography and their applications in					
		different industries.					
OR							
8	a)	Explain the effects of radiation on film in	L2	CO2	7 M		
		Radiography Testing and the factors that					
		influence image quality.					
	b)	Discuss the safety precautions required for	L2	CO2	7 M		
		handling electromagnetic radiation sources					
		in Industrial Radiography.					
UNIT-V							
9	a)	Explain the criteria for selecting NDT	L2	CO3	7 M		
		methods for inspecting pressure vessels and					
		pipelines in the oil and gas industry.					
	b)	Discuss the advantages of using multiple	L2	CO3	7 M		
		NDT methods for inspection of weldments.					
	OR						
10	a)	Illustrate the challenges involved in	L3	CO3	7 M		
		inspecting weldments with complex					
		geometries using NDT methods.					
	b)	Interpret the effectiveness of NDT methods	L3	CO3	7 M		
	,	in detecting internal defects in pipelines,					
		considering their limitations.					
		considering their inflictations.					